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Overview

e We propose Label Message Passing (LaMP) Networks to model the joint
prediction of labels by treating labels as nodes on a graph

Message Passing Neural Networks (MPNNs)
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e Joint representations of nodes and edges are modelled using message passing
rather than explicit probabilistic formulations, allowing for efficient inference

o Hidden state v/ € R of node i € G is updated based on messages m! from
neighboring nodes {v;_,,} defined by neighborhood N (i):

m; = Xien (i) Fm(Vi, Vi),
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Multi-Label Classification Setup

o Goal: predict the set of labels {y1, y5,...,yi }, yi € {0,1} given x
e We represent the input x as feature vector feature vector x € R?
o Labels first represented as embedded vectors {uf=", uf=0, ..., ut=}, uf € R?

e The key idea of LaMP networks is that labels are represented as nodes in a
label-interaction graph G,y where nodes are vectors {uy, }

e Given x, LaMP models the conditional dependencies between label embeddings
{uy, U5, ..., u;} using Message Passing Neural Networks

Label Message Passing Networks (LaMP)
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Passes messages from input x to each label embedding u?

m/t — Fm(uitvx)v

UIF, — Fu(mf).

Label-to-Label Message Passing

Passes messages between label embeddings to update their states conditioned on x
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Readout Layer
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Predicts the probabilities of each label being positive {1, ...y, }
yi = R(u]; W°) = sigmoid(W?u").
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—(yilog(7) + (1 — y;) log(1 — ¥/))
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Loss Function

Loss(y.9) = + 31
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Label Graph Structure

e Prior: Use known label structure or place edges between co-occurring labels

e Fully Connected: Use attention to learn the graph while training the classifier

(0,3,4+(X4,3)/ 2

& /

[UNIVERSITY
JE "T\IRGINIA

i

Results

e We validate the benefits of LaMP on eight real-world MLC datasets

o [ hree LaMP variants: LaMP, uses an edgeless label graph assuming no label
dependencies, LaMPy. uses a fully connected label graph, and LaMP,, uses a
prior label graph

Performance
Example-based F1 scores across all 8 datasets

Reuters | Bibtex | Bookmarks | Delicious | RCV1 | TFBS | NUSWIDE | SIDER
FastXML[1] - - - - 0.841 | - - -
Madjarov|2] - 0.434 | 0.257 0.343 - - - -
SPEN(3] - 0.422 0.344 0.375 - - - -
RNN Seq2Seq[4] | 0.894 | 0.393 0.362 0.320 [0.890 | 0.249 0.329 0.356
MLP 0.854 | 0.363 0.368 0.371 | 0.865 | 0.167 0.371 0.766
LaMP 0.883 | 0.435 0.375 0.369 | 0.887 | 0.310 0.376 0.766
LaMP, 0.902 |0.447 0.386 0.372 | 0.887 | 0.321 0.372 0.766
LaMP 0.906 | 0.445 0.389 0.372 1 0889 0.321| 0.376 0.764

Interpretability
Visualization of intermediate predictions and attention scores

Intermediate Predictions at each step
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Each column shows training or testing speed for LaMP in minutes per epoch.
Speedups over RNN Seq2Seq are in parentheses

Dataset Training Testing

Reuters 0.788 (1.5x) |0.116 (2.1x)
Bibtex 0.376 (2.1x) |0.080 (2.1x)
Delicious | 3.172 (1.1x) |0.473 (3.2x)
Bookmarks | 9.664 (1.2x) | 1.849 (1.3x)
RCV1 08.346 (1.2x) | 1.003 (1.7x)
TFBS 187.14 (2.5%) | 13.04 (4.2x)
NUS-WIDE | 3.201 (1.2x) | 0.921 (8.0x)
SIDER | 0.027 (2.5x) | 0.003 (21x)
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