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●
● {y1,y2,...,yL}, yi ∈ {0,1}
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There are dependencies between labels!
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Embedding Space
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● MPNNs can learn useful node representations for classifying nodes by 
encoding local graph structures and node attributes

● Main idea: pass messages between pairs of nodes and update them
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MPNNs are good at modeling relationships 
(joint representation of nodes and edges)
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● Main Idea: Labels are represented as nodes in a label-interaction graph

● Given input embedding x, the goal of LaMP is to model the conditional dependencies 
between label embeddings {u 

t
1:L

 } using Message Passing Neural Networks

● LaMP uses MPNN modules to update label embeddings at each step t in two parts

33



34



35



36



●
 { ŷ1,ŷ2 ,...,ŷL}

●

37

T



 

38



39



40



41

●
●



42

●
●



43



44



45



46



●
●

47



48



49



50



51



52



53



● LaMP models label interactions for MLC by placing labels as nodes on a graph
● LaMP networks are as accurate, faster, and more interpretable than the previous 

state-of-the-art MLC classifiers
● Representation learning: exploiting the inductive bias of a model automatically 

discover the representations needed for classification
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