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Background/Motivation

“The cat sat apple the mat.” — High entropy (unnatural)

“The cat sat on the mat.” — Low entropy (natural)

def convolve features( ) — 2?7

Hypothesis: “unnatural” code is suspicious, possibly suggesting a bug




Language Models
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n-gram Language Models
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Entropy (information theory)

Entropy (H) measures the amount of uncertainty in a distribution
JiiE= Z p(x)logp(x)
English text has between 0.6 and 1.3 bits of entropy for each character

Goal: Find the entropy of a new line from a previously trained language model
in order to determine if it is a possibly buggy line



Our Project

Goal: Test more complex language models and see if we can better
predict buggy lines based on entropy

Method: We use Recurrent Neural Networks as our language model which
can more accurately handle long term dependencies in the language



Recurrent Neural Networks (RNNs)

Traditional Neural Network Recurrent Neural Network
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Recurrent Neural Networks (RNNs)

Recurrent nets can model the full conditional distribution
N
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... at the cost of a much higher optimization problem




Character-level RNN Language Model
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Character-level RNN Language Model
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Long Short Term Memory Networks (LSTMs)

Recurrent networks suffer from the “vanishing gradient problem”
e Aren’t able to model long term dependencies in sequences
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Long Short Term Memory Networks (LSTMs)

Recurrent networks suffer from the “vanishing gradient problem”
e Aren’t able to model long term dependencies in sequences

Use “gating units” to learn when to remember
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Model design

We train two models:
e Global language model (GLM)
e Local language model (LLM)
To get the final entropy, we evaluate

e the entropy from the global model
e the combined entropy of the local and global model:

H . =2AHg,, + (1-1)H

total LLM



Dataset

Elasticsearch project on Github

Snapshots JAVA files Lines
Training set 50 118,164 16,502,732
Testing set” 18 59,180 9,437,902
Total 68 177,344 25,940,634

*To actually test, we selected 10,902 buggy lines and 10,902 non-buggy lines from the total

9,437,902 lines

The “local LM” was trained on the remaining 9,416,098 lines




Dataset

Test lines




Average Entropy

Buggy Lines Non-Buggy Lines
Global LSTM Global + Local LSTM Global LSTM Global + Local LSTM
Avg Entropy 1.6498 1.5842 1.5925 1.5230

Avg Entropy Difference (buggy avg - nonbuggy avg)

0.065

0.055

0.05

I Global LSTM

I Global + Local
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Buggy Language Model

Trained a “buggy language model” on the buggy lines (+/- 5 lines) on the
training set.

Tested on the same lines as before

Buggy Lines Non-Buggy Lines

Avg Entropy 1.20028 1.18082




Future Work

1. Train the language model on many different projects of the same language
(e.g. Java) in order to create a true model of the actual language.

2. Then, train a local language model on just the project of interest.



