Exploring the Naturalness of Code
with Recurrent Neural Networks

Jack Lanchantin and Ji Gao
April 26, 2016

UNIVERSITYs VIRGINIA

Background/Motivation

“The cat sat apple the mat.” — High entropy (unnatural)

“The cat sat on the mat.” — Low entropy (natural)

def convolve features() — 2?7

Hypothesis: “unnatural” code is suspicious, possibly suggesting a bug

Language Models

N

P(S) = P(tt, ... t,) =P(t) - | [P(tslts, . .., ti1) |

73:2‘ Y

Hard to compute

n-gram Language Models

2

P(S) = P(t,t, ... t,) =P(t) - | [P(tlts, - .., ti1)

Bl bz |) = Pllalle_gigess « = ;To—n)

Entropy (information theory)

Entropy (H) measures the amount of uncertainty in a distribution
JiiE= Z p(x)logp(x)
English text has between 0.6 and 1.3 bits of entropy for each character

Goal: Find the entropy of a new line from a previously trained language model
in order to determine if it is a possibly buggy line

Our Project

Goal: Test more complex language models and see if we can better
predict buggy lines based on entropy

Method: We use Recurrent Neural Networks as our language model which
can more accurately handle long term dependencies in the language

Recurrent Neural Networks (RNNs)

Traditional Neural Network Recurrent Neural Network

@

Recurrent Neural Networks (RNNs)

Recurrent nets can model the full conditional distribution
N
P(S) — P(t]t2 tN) :P(tl) . Hp(ti|t1, o # s ,tz‘—l)
=2

... at the cost of a much higher optimization problem

Character-level RNN Language Model

e

1.0
2.2

-3.0

4.1

0.5
0.3

-1.0

1.2

|

|

0.1
0.5
1.9

-1.1

Character-level RNN Language Model

|

(= = N s

=- OO0 - —mP

®

— O = 0O O —P

10

loss(t = 1) loss(t = 2) loss(t = 3) loss(t = 4)
—— —— —— —t—

R 1.0 0 0.5 0 0.1 0 -1.0 0
Y —_— 2.2 . 1 0.3 |, 0 05| O 11, O
-3.0 0 -1.0 1 1.9 1 0.2 0
4.1 0 1.2 0 -1.1 0 2.2 1
Wy Wy Wy W_y
W h W_h W h
= » E—— —
TWX TW_X T W_x T W_x
1 0 0 0
X — 0 1 0 0
0 0 1 1
0 0 0 0
h e | |

P(s, | 84,8,,85) P(sl s,,..008,)

P(s, | s,,8,)

P(s, | s,)

g “
z z
& l—— LSTM |le—o
h_
=
g “
z =
o le—— LSTM <—
h_
=
7 “
S leZ— LSTM <
h_
z
4)

12

loss(t = 1) loss(t = 2) loss(t = 3) loss(t = 4)
—— —— —— —t—

. 1.0 0 0.5 0 0.1 0 -1.0 0
\% . [22|] 1 03[| 0 05| 0 11 (.| 0
-3.0 0 -1.0 1 1.9 1 0.2 0
4.1 0 1.2 0 -1.1 0 2.2 1
Wy Wy Wy o W_y
W h Wh O W h
= AT R WY B
TWX Tw_x T W x TWX
1 0 0 0
X—» | 0 1 0 0
0 0 1 1
0 0 0 0
h e | |

Long Short Term Memory Networks (LSTMs)

Recurrent networks suffer from the “vanishing gradient problem”
e Aren’t able to model long term dependencies in sequences

-y
(o

Long Short Term Memory Networks (LSTMs)

Recurrent networks suffer from the “vanishing gradient problem”
e Aren’t able to model long term dependencies in sequences

Use “gating units” to learn when to remember

N N

Input Gate Z.t Output Gate O

Model design

We train two models:
e Global language model (GLM)
e Local language model (LLM)
To get the final entropy, we evaluate

e the entropy from the global model
e the combined entropy of the local and global model:

H . =2AHg,, + (1-1)H

total LLM

Dataset

Elasticsearch project on Github

Snapshots JAVA files Lines
Training set 50 118,164 16,502,732
Testing set” 18 59,180 9,437,902
Total 68 177,344 25,940,634

*To actually test, we selected 10,902 buggy lines and 10,902 non-buggy lines from the total

9,437,902 lines

The “local LM” was trained on the remaining 9,416,098 lines

Dataset

Test lines

Average Entropy

Buggy Lines Non-Buggy Lines
Global LSTM Global + Local LSTM Global LSTM Global + Local LSTM
Avg Entropy 1.6498 1.5842 1.5925 1.5230

Avg Entropy Difference (buggy avg - nonbuggy avg)

0.065

0.055

0.05

I Global LSTM

I Global + Local
LST™M

0.54

0.53

0.52

0.51

0.5

n-gram

AUC comparison

Global LSTM

Global + Local LSTM

Buggy Language Model

Trained a “buggy language model” on the buggy lines (+/- 5 lines) on the
training set.

Tested on the same lines as before

Buggy Lines Non-Buggy Lines

Avg Entropy 1.20028 1.18082

Future Work

1. Train the language model on many different projects of the same language
(e.g. Java) in order to create a true model of the actual language.

2. Then, train a local language model on just the project of interest.

