Exploring the Naturalness of Code with Recurrent Neural Networks

Jack Lanchantin and Ji Gao

April 26, 2016

Background/Motivation

"The cat sat apple the mat." \rightarrow High entropy (unnatural)

"The cat sat on the mat." \rightarrow Low entropy (natural)

def convolve_features(int a, int b) → ??

• • •

Hypothesis: "unnatural" code is suspicious, possibly suggesting a bug

Language Models

$$P(S) = P(t_{1,}t_{2,} \dots t_{N}) = P(t_{1}) \cdot \prod_{i=2}^{N} P(t_{i}|t_{1}, \dots, t_{i-1})$$

Hard to compute

n-gram Language Models

$$P(S) = P(t_{1}, t_{2}, \dots, t_{N}) = P(t_{1}) \cdot \prod_{i=2}^{N} \frac{P(t_{i}|t_{1}, \dots, t_{i-1})}{P(t_{i}|t_{1}, \dots, t_{i-1})}$$

$$P_{ngram}(t_i|h) = P(t_i|t_{i-n+1}, \dots, t_{i-1})$$

Entropy (information theory)

Entropy (H) measures the amount of uncertainty in a distribution

$$H = -\sum p(x)\log p(x)$$

English text has between 0.6 and 1.3 bits of entropy for each character

Goal: Find the entropy of a new line from a previously trained language model in order to determine if it is a possibly buggy line

Our Project

Goal: Test more complex language models and see if we can better predict buggy lines based on entropy

Method: We use Recurrent Neural Networks as our language model which can more accurately handle long term dependencies in the language

Recurrent Neural Networks (RNNs)

Traditional Neural Network

Recurrent Neural Network

Recurrent Neural Networks (RNNs)

Character-level RNN Language Model

Character-level RNN Language Model

Long Short Term Memory Networks (LSTMs)

Recurrent networks suffer from the "vanishing gradient problem"

• Aren't able to model long term dependencies in sequences

Long Short Term Memory Networks (LSTMs)

Recurrent networks suffer from the "vanishing gradient problem"

• Aren't able to model long term dependencies in sequences

Use "gating units" to learn when to remember

Model design

We train two models:

- Global language model (GLM)
- Local language model (LLM)

To get the final entropy, we evaluate

- the entropy from the global model
- the combined entropy of the local and global model:

$$H_{total} = \lambda H_{GLM} + (1 - \lambda) H_{LLM}$$

Dataset

Elasticsearch project on Github

	Snapshots	JAVA files	Lines
Training set	50	118,164	16,502,732
Testing set*	18	59,180	9,437,902
Total	68	177,344	25,940,634

*To actually test, we selected 10,902 buggy lines and 10,902 non-buggy lines from the total 9,437,902 lines

The "local LM" was trained on the remaining 9,416,098 lines

Dataset

Average Entropy

	Buggy Lines		Non-Buggy Lines	
	Global LSTM	Global + Local LSTM	Global LSTM	Global + Local LSTM
Avg Entropy	1.6498	1.5842	1.5925	1.5230

AUC comparison

Buggy Language Model

Trained a "buggy language model" on the buggy lines (+/- 5 lines) on the training set.

Tested on the same lines as before

	Buggy Lines	Non-Buggy Lines
Avg Entropy	1.20028	1.18082

Future Work

- 1. Train the language model on many different projects of the same language (e.g. Java) in order to create a true model of the actual language.
- 2. Then, train a local language model on just the project of interest.