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Background/Motivation

“The cat sat apple the mat.” →  High entropy (unnatural)

“The cat sat on the mat.”   →  Low entropy (natural)

Hypothesis: “unnatural” code is suspicious, possibly suggesting a bug

def convolve_features(int a, int b) →  ??
...



Language Models

P(S) = P(t1,t2, … tN ) = 

Hard to compute



n-gram Language Models

P(S) = P(t1,t2, … tN ) = 



Entropy (information theory)

Entropy (H) measures the amount of uncertainty in a distribution

English text has between 0.6 and 1.3 bits of entropy for each character

Goal: Find the entropy of a new line from a previously trained language model 
in order to determine if it is a possibly buggy line



Our Project

Goal: Test more complex language models and see if we can better 
predict buggy lines based on entropy

Method: We use Recurrent Neural Networks as our language model which 
can more accurately handle long term dependencies in the language



Recurrent Neural Networks (RNNs)

Traditional Neural Network Recurrent Neural Network
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Recurrent Neural Networks (RNNs)
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Traditional Neural Network Recurrent Neural Network

P(S) = P(t1,t2, … tN ) = 

Recurrent nets can model the full conditional distribution

… at the cost of a much higher optimization problem
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Character-level RNN Language Model
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Long Short Term Memory Networks (LSTMs)
Recurrent networks suffer from the “vanishing gradient problem”
● Aren’t able to model long term dependencies in sequences
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Long Short Term Memory Networks (LSTMs)
Recurrent networks suffer from the “vanishing gradient problem”
● Aren’t able to model long term dependencies in sequences

Use “gating units” to learn when to remember
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We train two models:

● Global language model (GLM) 

● Local language model (LLM) 

To get the final entropy, we evaluate 

● the entropy from the global model 
● the combined entropy of the local and global model:

Model design

 Htotal = ᶝHGLM + (1-ᶝ)HLLM



Dataset

Elasticsearch project on Github

Snapshots JAVA files Lines

Training set 50 118,164 16,502,732

Testing set* 18 59,180 9,437,902

Total 68 177,344 25,940,634

*To actually test, we selected 10,902 buggy lines and 10,902 non-buggy lines from the total 
9,437,902 lines

The “local LM” was trained on the remaining 9,416,098 lines



Dataset

Global LM Local LM Test lines



Average Entropy

Buggy Lines Non-Buggy Lines

Global LSTM Global + Local LSTM Global LSTM Global + Local LSTM 

Avg Entropy 1.6498 1.5842 1.5925 1.5230

Avg Entropy Difference (buggy avg - nonbuggy avg)



AUC comparison



Buggy Language Model

Buggy Lines Non-Buggy Lines

Avg Entropy 1.20028 1.18082

Trained a “buggy language model” on the buggy lines (+/- 5 lines) on the 
training set.

Tested on the same lines as before



Future Work

1. Train the language model on many different projects of the same language 
(e.g. Java) in order to create a true model of the actual language.

2. Then, train a local language model on just the project of interest.


