
Exploring the Naturalness of Code
with Recurrent Neural Networks

Jack Lanchantin and Ji Gao
April 26, 2016

Background/Motivation

“The cat sat apple the mat.” → High entropy (unnatural)

“The cat sat on the mat.” → Low entropy (natural)

Hypothesis: “unnatural” code is suspicious, possibly suggesting a bug

def convolve_features(int a, int b) → ??
...

Language Models

P(S) = P(t1,t2, … tN) =

Hard to compute

n-gram Language Models

P(S) = P(t1,t2, … tN) =

Entropy (information theory)

Entropy (H) measures the amount of uncertainty in a distribution

English text has between 0.6 and 1.3 bits of entropy for each character

Goal: Find the entropy of a new line from a previously trained language model
in order to determine if it is a possibly buggy line

Our Project

Goal: Test more complex language models and see if we can better
predict buggy lines based on entropy

Method: We use Recurrent Neural Networks as our language model which
can more accurately handle long term dependencies in the language

Recurrent Neural Networks (RNNs)

Traditional Neural Network Recurrent Neural Network

input

hidden

output

input

hidden

output

Recurrent Neural Networks (RNNs)

input

hidden

output

input

hidden

output

Traditional Neural Network Recurrent Neural Network

P(S) = P(t1,t2, … tN) =

Recurrent nets can model the full conditional distribution

… at the cost of a much higher optimization problem

input

output

Character-level RNN Language Model

hidden

10

1
0
0
0

0
1
0
0

0
0
1
0

0
0
1
0

h e l l

e l l o
1.0
2.2
-3.0
4.1

0.5
0.3
-1.0
1.2

0.1
0.5
1.9
-1.1

-1.0
1.1
0.2
2.2

Ŷ

X

Character-level RNN Language Model

11

1
0
0
0

0
1
0
0

0
0
1
0

0
0
1
0

h e l l

1.0
2.2
-3.0
4.1

0.5
0.3
-1.0
1.2

0.1
0.5
1.9
-1.1

-1.0
1.1
0.2
2.2

Ŷ

X

0
1
0
0

0
0
1
0

0
0
1
0

* * *

0
0
0
1

*

loss(t = 1) loss(t = 3) loss(t = 4)loss(t = 2)

W_x

W_y

W_h

W_x

W_y

W_h

W_x

W_y

W_h

W_x

W_y

12

W_x

W_y

W_h

W_x

W_y

W_h

W_x

W_y

W_h

W_x

W_y

LS
TM

LS
TM

LS
TM

LS
TM

s1 s2 s3 s4

P(s3 | s1,s2)P(s2 | s1) P(s4 | s1,s2,s3) P(s5| s1,...,s4)

ᭉ1 ᭉ2 ᭉ3 ᭉ4

ᭊ1 ᭊ2 ᭊ3 ᭊ4

13

ᭉt

ᭊt

ᬹt

14

1
0
0
0

0
1
0
0

0
0
1
0

0
0
1
0

h e l l

1.0
2.2
-3.0
4.1

0.5
0.3
-1.0
1.2

0.1
0.5
1.9
-1.1

-1.0
1.1
0.2
2.2

Ŷ

X

0
1
0
0

0
0
1
0

0
0
1
0

* * *

0
0
0
1

*

loss(t = 1) loss(t = 3) loss(t = 4)loss(t = 2)

W_x

W_y

W_h

W_x

W_y

W_h

W_x

W_y

W_h

W_x

W_y

Long Short Term Memory Networks (LSTMs)
Recurrent networks suffer from the “vanishing gradient problem”
● Aren’t able to model long term dependencies in sequences

input

hidden

output

Long Short Term Memory Networks (LSTMs)
Recurrent networks suffer from the “vanishing gradient problem”
● Aren’t able to model long term dependencies in sequences

Use “gating units” to learn when to remember

input

output

We train two models:

● Global language model (GLM)

● Local language model (LLM)

To get the final entropy, we evaluate

● the entropy from the global model
● the combined entropy of the local and global model:

Model design

 Htotal = ᶝHGLM + (1-ᶝ)HLLM

Dataset

Elasticsearch project on Github

Snapshots JAVA files Lines

Training set 50 118,164 16,502,732

Testing set* 18 59,180 9,437,902

Total 68 177,344 25,940,634

*To actually test, we selected 10,902 buggy lines and 10,902 non-buggy lines from the total
9,437,902 lines

The “local LM” was trained on the remaining 9,416,098 lines

Dataset

Global LM Local LM Test lines

Average Entropy

Buggy Lines Non-Buggy Lines

Global LSTM Global + Local LSTM Global LSTM Global + Local LSTM

Avg Entropy 1.6498 1.5842 1.5925 1.5230

Avg Entropy Difference (buggy avg - nonbuggy avg)

AUC comparison

Buggy Language Model

Buggy Lines Non-Buggy Lines

Avg Entropy 1.20028 1.18082

Trained a “buggy language model” on the buggy lines (+/- 5 lines) on the
training set.

Tested on the same lines as before

Future Work

1. Train the language model on many different projects of the same language
(e.g. Java) in order to create a true model of the actual language.

2. Then, train a local language model on just the project of interest.

